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It is shown that the behavior of an arbitrary wave propagating in the field of a nonrotat- 

ing charged black hole is defined (with the use of quadratures) by four functions. Each 
of these functions obeys its second order equation of the wave kind. Short electromagne- 
tic waves falling onto a black hole are reflected by its field in the form of gravitational 

and electromagnetic waves whose amplitude was explicitly determined. In the case of 
the wave carrying rays winding around the limit cycle the reflection and transmission 
coefficients were obtained in the form of analytic expressions. 

Various physical processes taking place inside, as well as outside a collapsing star, may 
induce perturbations of the gravitational, electromagnetic and other fields, and lead to 
the appearance in the surrounding space of waves of various kinds which propagate over 
a distorted background and are dissipated along its inhomogeneities. 

In the absence of rotation and charge in a star, the analysis of small perturbations of 
the gravitational fields is based on the system of Einstein equations linearized around the 
Schwarzschild solution. In [ 1, 23 this system of equations, after expansion of perturbations 
in spherical harmonics and Fourier transformation with respect to time, was reduced to 
two independent linear ordinary differential equations of second order of the form of the 
stationary Schrodinger equation for a particle in a potential force field. Each of these 
equations defines one of two possible independent perturbation kinds : “even” and “odd” 
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(the different behavior of spherical tensor harmonics at coordinate inversion is the deci- 
ding factor in the determination of the kind of perturbation [l, 21). Although these 
equations were derived with the superposition on the perturbations of the metric of spe- 
cific coordinate conditions, they define, as shown in [4], the behavior of invariants of the 

perturbed gravitational field, which imparts to the potential barriers appearing in these 
equations an invariant meaning. 

The system of Maxwell equations on the background of Schwarzschild solution also 

reduces to similar equations, which differ from the above only by the form of potential 
barriers appearing in these [S]. 

In the presence in the unperturbed solution of a strong electromagnetic field the gra- 
vitational and electromagnetic waves interact with each other, and transmutation takes 

place. The train of short periodic electromagnetic waves generates the accompanying 

train of gravitational waves. This phenomenon was first analyzed in [6] on and arbitrary 

background. It was shown in lJ7, 81 that dense stars surrounded by hot plasma may acquire 
a charge owing to splitting of charges by radiation pressure and the “sweeping out” of 

positrons nascent in vapors in strong electrostatic fields. The interaction of waves be- 

comes particularly clearly evident in the neighborhood of black holes which may serve 

as “valves” by maintaining equilibrium between the relict electromagnetic and gravi- 
tational radiation in the Universe. Rotation of black holes intensifies this effect [C;]. 

If a nonrotating star possesses an electrostatic charge, the definition of perturbations 
of the electromagnetic and gravitational fields must be based on the complete system 

of Einstein-Maxwell equations linearized around the Nordstrom-Reissner solution. (Small 
perturbations of electromagnetic field outside a charged black hole were considered in 

[9, lo] on the basis of the system of Maxwell equations on a “rigid” background of the 
Nordstrom-Reissner solution, without taking into account the interconvertibility of gravi- 

tational and electromagnetic waves, which materially affects their behavior in the neigh- 

borhood of a charged black hole). Here this system of equations which define the inter- 
acting gravitational and electromagnetic perturbations are reduced to four independent 

second order differential equations, two for each kind of perturbations (an importsnt part 

is played here by the coordinate conditions imposed on the perturbations of the metric, 

proposed by the authors in [4]). Perturbation components of the metric and of the elec- 

tromagnetic field are determined in quadratures by the solutions of these equations. If 
the charge of a star tends to vanish, two of the derived equations convert to equations 
for gravitational waves on the background of the Schwarzschild solution [ 1, 21, while the 
twoothers become equations which are equivalent to Maxwell solutions on the same back- 

ground. The short-wave asymptotics of derived equations is determined throughout inclu- 
ding the neighborhood of the limit cycle for the wave carrying rays. These solutions far 
away from the point of turn coincide with those obtained in [6] for any arbitrary back- 
ground. Approximation of geometric optics does not provide correct asymptotics for im- 
pact parameters of rays which are close to critical for which the isotropic and geodesic 

parameters wind around the limit cycle. This case is investigated below. 

A similar situation in the Schwarzschild field was analyzed in l-111, where analytic 
expressions for the wave reflection and transmission coefficients were determined, and 
the integral radiation stream trapped by a black hole produced by another radiation com- 

ponent of the dual system was calculated. 
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1, Dsrivrtfon of fundamental equationa, The external field of a char- 
ged non~tating spherically-~mmeuic black hole is defined by the electro-vacuum 

Nordstrom -Reissner solution 

dss = evc2dt2 - emvdr2 - r2 (dQ2 + sin8 8dv2) (1.1) 
8’0, = -E, E = Q/r%, m = yMl I?> q” = rQ2 / ~4, ev = 1 - 2m I P -+ q2ir2 

where Q is the charge and 34 the mass of the black hole, 

1.1. Notation and formulas. Indices a, &‘r, . . . = 0, 1; at 6, c, -. .=2, 
3; i, j, k, + . . = 0, 1, 2, 3; coordinates 2 = ct, z1 = 7, d = 0, x3 = 9p; &.o and gab 
are metric tensors on coordinate surfaces (x0, 9) and (9, ~3) , respectively, induced by 

metric gij of solution (1.1). The raising and lowering of indices a, b, . . - and a, b, - - . 
is effected with the use of metrics &a and gab ,respectively, V, and V, are operators 
of covariant differentiation at coordinate surfaces (zot x1) and (x2, x3) constructed by 

metrics gas and &G a,a and fiab are Levi-Civita tensors at these surfaces. The nonzero 

components of Maxwell tensors for the Nordstrom-Reissner solution are 

Fap -;= - 3aQE, & = In 9, pa = V,p, C,E = -p=F 

3*1= g aP c,vps c23 = &@v,v, = - A j r2 

where ,S is the Laplace operator on a ho-dimensioM1 sphere of unit radius, 
The perturbations of metric hih- related to coordinate transformation on the sphere 

decompose into sets of scalars boo, hO1 and hll, vectors hOa and hr, , and tensor hab. 
Scalars hE8 belong to perturbations of the even kind. Vectors haa (haa denotes the set 
of two vectors: hoG and kl,) and tensor kab can be represented in the form 

haa = Bn~,Gbk, + VJT,, k@, = @ncVb’GC~ + &cVa~c B + VaVbG + &bfjl 

where k,, Ha, G, D and K are scalar functions. The terms which contain Paa corre- 

spond to the odd component of perturbations, and the remaining to even ones. A similar 

decomposition into components of different parities can be carried out, also, for perturba- 
tions of components of the Maxwell tensor (formulas are given below). 

1.2. Coordinate conditions. Coordinate conditions which can be satisfied 
by a particular choice of the infinitesimal coordinate transformation 2’ = i + Ej (2, 

9, 9, -G3j may be imposed on small perturbations of metric hi,. Such transformation 
alters lzih thus : hi;;’ == hi h - vi;k - vk&. The four-vector quantity & can be decom- 
posed into components: scalars &, and jr , and even vectors VOW and the odd vector 
BnbVbn * The even component of vector & contains three arbitrary functions (Eo, El, Et, 
and the odd one has a single one fs). It is, consequently, possible to impose on the even 

perturbations three conditions and on the odd ones a single condition. 
Let us impose the following coordinate conditions: 

haa’ - k,” f k,l’ = 0, hab’ = 0 (1.2) 

which for the scalar functions yields 

where the specific form of metric (1.1) is taken into consideration. It will be seen that 
the FJ necessary for satisfying conditions (1.2) are determined by the’perturbations of 

the metric in quadratures, hence the imposed coordinate conditions can always be satis- 
fied, 
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It is assumed in what follows that quantities h,p, h, and H, are tensors with respect 
to transformation of coordinates on surface (z,,, ~1). 

1. 3. Odd perturbations. If the coordinate conditions are satisfied, the odd 
components of metric tensor perturbations are of the form 

hap = 0, hcla -- Pa,Vbh,. hllll -= o (1.3) 

Perturbations of the Maxwell tensor components Fik and its dual tensor Flk=‘/zEiklmF1” 

are defined by 6F”b =zz 0. 8Faa = eabV@, 6Fah = sab8H 

&a, aeQj F[ ij+= Vu (&‘F, -- lSha), ,@a" = 0 
(1.4) 

1.3.1. Maxwell equat’ions for perturbations. When conditions(1.2) 
are satisfied, the determinant g of the metric tensor remains unperturbed and the Max- 

well equations for perturbations assume the form 

(1.5) 

Using the notation introduced above, these equations can be written as 

VpFP = 6 H, aaPV,Fp -:- Ep.Uh, = 0 (1.6) 

VP6 H + p$H -?- im’z3 (Fa - ISaa,hY) = 0 

Applying operator VP to the last of Eqs. (1.6) and eliminating Fp with the use of the 
remaining of these equations, we obtain 

Ool(6/1/~)+Cza(6Fr/E) =---h[aGSV,(hR/r2)] (1.7) 

1.3.2. Perturbations of components of the energy-momentum 

tensor. Perturbations of the electromagnetic field (1.4) induce perturbations of the 

energy-momentum tensor components 

6T,, = 0, ST& := 0 (1.8) 

6T,,=~a,Vb[eh,--(~/4x)cc,pF~], E= P/8x 

1. 3. 3. Linearized Einstein equations. Perturbations of the Picci tensor 

components induced by the perturbations of metric (1.3) are of the form 

6R,D = 0 

26R,,= - PabVb [ @,,h, + @23ha - V&h@ + P&@ - %Q, - 

V, (&$a) + (2”&3 + u&J hP1t R*=(a2/ar2)eV/2 

26R,, = Q7,VCVaha + PbCV,VcV,ha 

(1.9) 

where R, is the curvature scalar for metric g,a. On the strength of Einstein equations 

from (1.8) and (1.9), we have 

Vaha = 0 (1.10) 

CO&, + c 23& - v, @,@) + (2v&3 + t%#Lp) h" - '/~*.%F=(xE / 2n) a,_J@ - 2xeh, (1.11) 

Terms which vanish because of (1.10) are omitted in (1.11). We convolute (1.11) with 
Pa, apply to both parts the Laplace operator and, using (1.6) eliminate from the right- 
hand part Fp. We obtain 
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C,,& + CPR~ + [3/zR* - 5xe] h = 4~~r@p& (aH/ E), h = A@” (1.12) 

1. 3.4. The closed system of equations. Let us consider Eq. (1.7). 
Using (1.10) - (1.12) we express its right-hand part in terms of h by applying to (1.7) 
the operator raaQpavp, which in coordinates (ct, r, 8, cp) reduces to 2d Y cat and is, 
consequently, permutative with all remaining differentiation operators. As the result we 
have 

CO~(P + c'239 + 4?rey + (A + 2) h / r3 = 0, cp:= @p,Vp (6Fi/ E) (1.13) 

with (1.12) assuming the form 

Co+ + Ceah + [(3/Z)R, - 5xe]h = 4xercp (1.14) 

Equations (1.13) and (1.14) constitute a closed system. Components of the electromag- 
netic and gravitational field perturbations are determined by solving that system together 

with the remaining Einstein and Maxwell equations in the form of series in spherical func- 

tions whose coefficients are computed in quadratic form. In coordinates (ct, T, 8, y) 

these equations are of the form 

Lh = - 6 (m / r3) h - 4 (q2 / r3) q, _Lv = (A + 2) h / 9 (1.15) 
r* = j e-’ dr, L = - co1 - p2a - 4qa / fl 

where 1> 2, since for 1 = 0, 1 the derivation of these equations looses its meaning. 
It is evidently possible to introduce new variables q+ and tl_ by formulas 

rl+ = C@ + W?, c+ = 3m * IfYmz- 4q2 (A + 2) (1.16) 

such that system (1.15) is decomposed into two independent second order equations each 

of which contains only one unknown (the plus or minus sign are chosen to suit the un- 
known qt. and%) 

(1.17) 
(a2 I W2 - 9 / c%V) q+ + (A I r2 + Ck 13 - 4$/ IA) (I-2m / r + q”/$)q+ = U .- 

1.4. Even perturbations. A procedure similar to the above can be also ap- 
plied to even perturbations. For coordinate conditions (1.2) we have the following non- 

zero components of even perturbations of the metric, and of the Maxwell tensor and its 
dual 

fQF@ = - r&F ‘9 6Fua s oaf”, i3Fab = 0 

g@ = 0 , a+ zz - babVb (r@fn - [<Ha), dab = pab6E 

1.4.1. Maxwell equation for perturbations. For even perturbations 
we write Eqs. (1.5) in the form 

VpfD = 0, A tOL + aaP$(r2GE) = 0, @if, fp + Ep,Ha + 615 = 0 (1.18) 

Eliminating f”, as in the case of odd perturbations, from (1.18) we obtain 

CotY + Ce3Y - A (paHa / 3) = 0, Y = 6E I E (1.19) 

Below we shall also use the equality 

which follows from (1.18). 
Ac@y& - - paV,y (1.20) 

1.4.2. Perturbations of components of the energy-momentum 
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tensor. 
“Tap = (ESE / 4n) gap + diali (1.21) 

8T,,=Va[-(E/4n),,pf8+~IIa] 

“Tab = - (ESE / 4~) gaD 

1.4.3. Linearized Einstein equations. Perturbations of the Bicci tensor 
components 

28R,a= V, (V,hpY + VphaY - VYh,& f p,, (VahqY + Vph,Y - VYh,& -+ (10~~) 

C23 (V,H$ + V,rIa-h,g) 

26R,,= Va[-llolH, +V,(I"~"')-(""~~~+~~~~) ~~'3+Vp~,P+('lr) R.ff,l 

26R,,,= g,,[V,(Pfihap) -f-Pc,P,h"'+~z3(~a~~a)l +2VaVbV,Ha 

FO even perturbations it is convenient to carry out transformations with aII equations 

expressed in terms of coordinates (et, r, 6, cp). By virtue of the Einstein equations, taking 
into account (1.20) from (1.21) and (1.22) we have 

(aa I ar*s - a* 1 $ijt%) R + (6m / ~3 - Sqz / r’) e”H + (2A I r) [(a / cWho’ + (1.23) 
(a / &*) hoeI = - &we’ (a 1 dr*) Y 

(2 / r) (a / cat) ho1 + (2 19) (a / dr*) (hoor) - e”H J fz = - 4xEe”Y 

(2 / r.) (a / cat) he0 - (I / 27) (a / cat) H + (A / r2) [e” (al ar*) r + ho’1 = 0 
(2 / r) (8 / cat) h$ + (1 / r2) (a I ar*) (rH) + Wahoo / r2 - (Y’ / 2r) e’H = 0 

(13 J Lb)@ + (a I cat) H" = 0 

(A = - 1 (I + I), z >, 2, W = 2AH’/ r = AuaH’, v’ = dv I dr) 

The derivation of these equations is analogous to the derivation of equations for even 
perturbations of a gravitational field on the background of the Schwarzschild metric, 
which was presented in detail in [4]. 

1.4. 4. The closed system of equations. We introduce new variables 

M = rho0 - Hr I 2, N = Aho,-, f (4 - 3m 1 r + 2q’2 f r2) H 

and, eliminating ho1 from the second and fourth of Eqs. (1.23) obtain 

2 (a / &*) M = N - 4xsPe”Y (1.24) 

It follows from Eqs.(1.23) that 

(8 I ar*) N I 2 - (a2 I ca M) M + e”AM I r2 - (2e” I rp (r)) (3m / r - (1.25) 
4q’IP) (N - AM/r) - 2xer%” (a I or*) Y = 0 

(p (r) = A + 2 - 6m / r + 4$ / P) 

Eliminating N from (1.24) and (1.25) and substituting M = Qp (r), we obtain 

(aa / lP2 - a2 I caat3) Q + [A I 3 f (6m / r - 4qa J 9) U(r) I r2 + (1.26) 

8qaev I r4p (r) ] e”Q& kere’ U (r) ‘4 = 0 
U (r) = (Aa -4+12m!r - f2m2 I P + 4mqz I P) ! p2 (P) 

In new variables Eq. (1.19) assumes the form 

(a2 I &*” - 9 / c2dta) Y + [A I r2 + 8e”q2 J r4p (r)] e’Y + (1.27) 
(4e” / r2) (a / ar*) Q + [4e” (3m / 7 - 44% I P) I p (r) - Al (2e”P) Q = 0 

Equations (1.26) and (1.27) constitute a closed system whose solutions determine all 
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perturbation components in the form of quadratures. This system decomposes similarly 
to system (1.15) into two independent equations by the introduction of new variables 

Q = (C* - 4q2 I 4 Q + 29a‘u (1.28) 

( c* is defined in (1.16)). Variables & satisfy equations 

(82 / dr*” - ~2/c2~tz)~+[A/r2+(~~-4q21r)(AZ-4+12m/r- (1.29) 

f2m2 / r2 + 4mqz / rS) 1 r9 (A + 2 - 6m / r -j- 4qa ] 32 + 8eYq2 /rdX 
(A+2-6mlr+4q~1$)]evx+ = 0 

2. Propagation of abort wave8 in the Nord#trC)m-Reirrner field, 
The effect of interference of electromagnetic and gravitational waves is particularly 
strongly evident in the case of short waves in which the ratio of the spherical harmonic 

number I to frequency o has the meaning of the impact parameter of the wave carry- 
ing ray. Retaining in the potential barriers (1.17) and (1.29) the first two terms of ex- 

pansions in inverse powers of o we obtain 

(d2 1 dr*“) b+ + a2 11 - e”p? / r2 + 2e”qp / Or31 & = 0, - p = I / 0, & = “rl*,t X* (2.1) 

The Wentzel-Kramers-Brillouin solution of Eqs. (2.1) (principal terms of expansion of 

solutions in inverse powers of o ) is defined by formulas 

5* = A+v (r)-“’ exp [ioa (r0*, r*) i $ (r0, r)] - (2.2) 

P 

v (r) = I- $- ( 

. 

CI (RI*, F*) = 
I 

v/I/Or* 

nJ* 

Using formulas (1.16) for defining the perturbations h and cp of the gravitational and 
electromagnetic fields, respectively, in terms of 5, and c_ from (2.2) we obtain 

Gl(P 
lop ph 1 i 

= V(r)- ‘~~exp[iou(ro*, r*)]{A+exp[ip(ro, r)lf A_exp[--iP(ro, r)l) (2.3) 

Similar expressions for even perturbations follow from (2.2) and (1.28). These results 
can also be obtained by the general method used in [S]. 

For a fixed impact parameter p, greater than some critical p*, the equation V (r) = 0 

determines the radius (r,) of maximum closeness of a ray from r+ = + 00 to the black 

hole and the radius (rb) of maximum distance of a ray from r* = - 00 to that hole. 

The asymptotics defined by (2.3) are invalid in the neighborhood of these reversal points. 
However for a finite distance between the roots of function 1/ (r) the wave is almost per- 

fectly reflected by the first encountered reversal point with the change of phase to .*I / 2; 
the transmission coefficient 

T z exp [(io / 2) cL (ra*, rb*)] 

is in this case exponentially small. 
The length of the intermodulation period of waves increases with increasing r, as im- 

plied by the expression for h : fi (r, r + h) = 2~. Hence the effect of wave interconver- 
tibility is absent at a great distance from the black hole, where the electromagnetic and 

gravitational waves propagate independently of each other. 
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When only an electromagnetic or gravitational wave impinges on a black hole, then 
( A+ 1 = 1 A- I. Such wave, having undergone several complete interconvertibility events 
into gravitational and electromagnetic waves, after perfect reflection, reaches + M in 

the form of a set of electromagnetic and gravitational waves. If initially a purely elec- 
tromagnetic wave v = a, exp (io r*) impinges on the black hole from P = + 00, then 

in the reflected wave the amplitude cp is equal 1 a, cos 28 (r,, CO) 1, and amplitude h is 

1(4q / p) a0 sin 2fJ (ra, 30) 1. In the general case of 1 A+ 1 # 1 A- 1, the waves undergoalong 
the length of the modulation period h only partial interconvertibility, varying, for exam- 

ple, in the case of electromagnetic wave impingement from the minimum value H_ to 

the maximum B+, where B+ = ]I A+ I-): ) A_ 11 / 4g po V?“. We stress that in all cases 
of such periodic transfer of energy (from one form to another) the total wave energy 

remains unchanged. 

For impact parameters p /, p* the waves are completely trapped by the black hole, 
since for finite difference of the complex roots of equation V (r) = 0 the reflection co- 

efficient becomes exponentially small [ 111. 
Charged black holes absorb relicit radiation in the Universe in the form of electromag- 

netic and gravitational waves with respective amplitudes a0 cos p (TV, ~0) I and 1 (4q I 
P) a, sin p &, ~0) 1, where 71 is the external gravitational radius of the black hole and 

a, the amplitude of the electromagnetic wave impinging from -/- 00 . 
Of particular interest is the case of p =: p* in which for impact parameters / / (I) dif- 

fering for short waves critical value by a magnitude of order w-1 the reflection and 

penetration parameters become comparable [ll]. For p = p* equation I7 (P) = 0 has 
a multiple root which corresponds to a ray winding around the limit cycle. Using the 
notation fi = v-1 - $ / m’L, we obtain for the radii of the circular orbits of massless par- 

ticles (photons) the expression r* = m (3 + 1/(1+&Y) / 2). The impact’parameter of 

rays winding around these circular orbits is 

p,=,n[462 I-10+4 1/i -7373 t_ (y2(y2)( 1/l + 862 -- l)]I 2 

If the black hole is electrically neutral, r* = 6m and p* = r/E m. If its charge is 

equal to its mass, r* = 2m and p* = 4 m. Formally the equation V (7) = 0 .has a mul- 

tiple root and under the inner horizon of events r2 = in (1 - Sj, but the corresponding 

impact parameters are imaginary. 

In the neighborhood of a closed ray I P - r* I - 0 (1 1 o) Eqs. (2.1) for impact para- 

meters close to critical lp - p* I - 0 (1 / w ) reduce to the equation of a parabolic cy- 

linder 
(7, / P*)4 (c12 I dr*2) 5* + (2.4) 

o2 [(r - .*)a (6r,2 - p*2) / r** +2(P*-PP)IP*~22/11~p*~*lC+=O 

Substituting the variable E = v/op, (6~~~ - p.+2)l!d (P - r*) / r*s, into (2.4), we obtain 
the Weber equation in its canonical form 

a+ (q) = tip, (6~*~ - P*~)-“’ (P* - P + q i op*r,) 

Using the theory of the degenerate hypergeometric function it is possible to show that 
the analytic continuation of the solution corresponding to the transmitted wave yields the 
sum of two waves: an incident and a reflected wave. The transmission coefficient T is 
in modulo equal to [exp (- na) + i]+, while the modulus of the reflection coefficient 
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R is equal [exp (nu) + 11”. Hence in the Wentzel-Kramers-Brillouin solutions (2.3) 

the ratioofmoduli A- and A+ in a reflected wave changes in comparison with the in- 

cident wave thus: 

(I A- I / I A+ 1)~ = (I A_ I I I A+ I) [exp (na-) + 11”~ [exp (au+) + I l-*:1 

and in the transmitted wave thus: 

(I A- l / I A+ \IT = (1 A- I / I A+ I) [exp (- na+) + 1l’12 [exp (- aa_) f 11-l” 

We would mention in conclusion the cosmological aspect of the obtained results. 
Charged black holes may be some kind of valves which control the equilibrium between 

the relict radiation of a black body and the hypothetical gravitational radiation in the 

Universe. 
The authors thank L. I. Sedov for valuable remarks. 
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